Deformations of promoter DNA bound to carcinogens help interpret effects on TATA-element structure and activity.

نویسندگان

  • Qing Zhang
  • Suse Broyde
  • Tamar Schlick
چکیده

The TATA-box binding protein (TBP) is required by eukaryotic RNA polymerases for correct transcription initiation. TBP binds to the minor groove of an 8 base pair (bp) DNA-promoter element known as the TATA box and severely bends the TATA box. The promoter-DNA substrate can be damaged by components present in the cell or the environment to produce covalent carcinogen-DNA adducts. These may lead to transcription blockage or unfaithful transcription. Benzo[a]pyrene (BP) is a widespread environmental chemical carcinogen which can be metabolically converted to DNA-reactive enantiomeric (+) and (-)-anti-benzo[a]pyrene diol epoxides (BPDEs). Recent experimental studies of a pair of stereoisomeric adenine adducts, derived from (+) and (-)-anti-BPDEs, have revealed how these lesions influence the complexation of TBP with the TATA box. Depending on the adduct's location in the TATA box and its stereochemistry, the stability of monomeric TATA-TBP complexes was found to increase or decrease relative to the unmodified DNA. We report here analyses of molecular-dynamics simulations to interpret these findings. Structural analyses of 12 DNA-protein systems representing different combinations of adduct stereoisomer type and placement within the promoter reveal that the location of the adduct within the TATA octamer determines whether the stability of TATA-TBP complexes is increased or decreased. The effect on binding stability can be interpreted in terms of conformational freedom and major-groove space available to BP due to the hydrogen bonds and inserted phenylalanines of the TATA-TBP complex; that is, depending on the position of the adenine to which BP is covalently bound, BP can be accommodated in an intercalated or major-groove orientation with ease or with difficulty (due to interference with TATA-TBP interactions). The unravelled structures and interactions thus reveal the effect of different adduct locations on TATA-TBP complex formation and suggest how transcription initiation may be affected by the presence of a bulky BP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereochemistry and position-dependent effects of carcinogens on TATA/TBP binding.

The TATA-box binding protein (TBP) is required by eukaryotic RNA polymerases to bind to the TATA box, an eight-basepair DNA promoter element, to initiate transcription. Carcinogen adducts that bind to the TATA box can hamper this important process. Benzo[a]pyrene (BP) is a representative chemical carcinogen that can be metabolically converted to highly reactive benzo[a]pyrene diol epoxides (BPD...

متن کامل

Crystal structure of a human TATA box-binding protein/TATA element complex.

The TATA box-binding protein (TBP) is required by all three eukaryotic RNA polymerases for correct initiation of transcription of ribosomal, messenger, small nuclear, and transfer RNAs. The cocrystal structure of the C-terminal/core region of human TBP complexed with the TATA element of the adenovirus major late promoter has been determined at 1.9 angstroms resolution. Structural and functional...

متن کامل

A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element.

In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally d...

متن کامل

Sequence-dependent solution structure and motions of 13 TATA/TBP (TATA-box binding protein) complexes.

The TATA element is a well-known example of a DNA promoter sequence recognized by the TATA box binding protein (TBP) through its intrinsic motion and deformability. Although TBP recognizes the TATA element octamer unusually (through the minor groove, which lacks the distinctive features of the major groove), single base-pair replacements alter transcriptional activity. Recent crystallographic e...

متن کامل

Yeast upstream activator protein GCN4 can stimulate transcription when its binding site replaces the TATA element.

We replaced the required TATA element of a yeast gal-his3 promoter by a binding site for GCN4, a protein that normally activates transcription when bound upstream of a TATA element. Surprisingly, GCN4 efficiently activates his3 transcription from wild-type initiation sites, though in a pattern associated with constitutive his3 transcription rather than GCN4 upstream activation through a TATA el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 362 1820  شماره 

صفحات  -

تاریخ انتشار 2004